Multiscale modeling of biological pattern formation.
نویسنده
چکیده
In the past few decades, it has become increasingly popular and important to utilize mathematical models to understand how microscopic intercellular interactions lead to the macroscopic pattern formation ubiquitous in the biological world. Modeling methodologies come in a large variety and presently it is unclear what is their interrelationship and the assumptions implicit in their use. They can be broadly divided into three categories according to the spatial scale they purport to describe: the molecular, the cellular and the tissue scales. Most models address dynamics at the tissue-scale, few address the cellular scale and very few address the molecular scale. Of course there would be no dissent between models or at least the underlying assumptions would be known if they were all rigorously derived from a molecular level model, in which case the laws of physics and chemistry are very well known. However in practice this is not possible due to the immense complexity of the problem. A simpler approach is to derive models at a coarse scale from an intermediate scale model which has the special property of being based on biology and physics which are experimentally well studied. In this article we use such an approach to understand the assumptions inherent in the use of the most popular models, the tissue-level ones. Such models are found to invariably rely on the hidden assumption that statistical correlations between cells can be neglected. This often means that the predictions of these models are qualitatively correct but may fail in spatial regions where cell concentration is small, particularly if there are strong long-range correlations in cell movement. Such behavior can only be properly taken into account by cellular models. However such models unlike the tissue-level models are frequently not easily amenable to analysis, except when the number of interacting cells is small or when the interactions are weak, and thus are rather more suited for simulation. Hence it is our conclusion that the simultaneous theoretical and numerical analysis of models of the same biological system at different spatial scales provides a more robust method of understanding biological systems than the utilization of a single scale model. In particular this enables one to clearly separate nonphysical predictions stemming from model artifacts from those due to genuine physiological behavior.
منابع مشابه
From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology
The collective behavior of bacterial populations provides an example of how cell-level decision-making translates into population-level behavior, and illustrates clearly the difficult multi-scale mathematical problem of incorporating individual-level behavior into population-level models. Here we focus on the flagellated bacterium E. coli, for which a great deal is known about signal detection,...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملNovel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that ...
متن کاملIntegration of Angiogenesis Modules at Multiple Scales: From Molecular to Tissue
Multiscale modeling has emerged as a powerful approach to interpret and capitalize on the biological complexity underlying blood vessel growth. We present a multiscale model of angiogenesis that heralds the start of a large scale initiative to integrate related biological models. The goal of the integrative project is to better understand underlying biological mechanisms from the molecular leve...
متن کاملA FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete
This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current topics in developmental biology
دوره 81 شماره
صفحات -
تاریخ انتشار 2008